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Abstract

Contemporary data analysis often involves large-scale hypothesis testing, a funda-
mental problem in statistical inference and model selection. With the paradigm shift in
data collection patterns, modern datasets often possess distinct characteristics, includ-
ing large magnitude, sparse signal, rich auxiliary information, and nuanced dependence
structures. This poses significant challenges and necessitates innovations in theories
and methodologies. In this paper, we focus on multiple testing with false discovery rate
(FDR) control and offer a selective overview of conventional methods and the recent ad-
vancements in this domain, including the choice of summary statistics, estimation, and
detection. We start with the celebrated Benjamini-Hochberg (BH) procedure and dis-
cuss the issue of sparsity from both frequentist and Bayesian perspectives. Following the
classical framework, we move to the problem of accommodating side information, and
discuss the issue of dependence. A brief introduction to related topics is also provided.
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1 Introduction

The issue of multiple comparisons arises when conducting numerous hypothesis testings (Hsu, 1996).
In such cases, where there is a collection of hypotheses to be tested, the challenge is to distinguish
between null and non-null hypotheses while controlling the error rates. This issue is fundamental in
statistical inference and has prompted the development of various procedures. Failure to correct for
multiplicity can lead to serious concerns regarding reproducibility, publication bias, and p-hacking
in scientific research (Ioannidis, 2005; Head et al., 2015). Specifically, multiplicity is inherently con-
nected to the reproducibility of scientific findings. Goodman et al. (2016) claimed that multiplicity,
combined with incomplete reporting, might be the largest contributor to the non-reproducibility or
falsity of published claims. Multiplicity adjustment can greatly enhance the reproducibility of re-
sults from psychology experiments (Zeevi et al., 2020). This article reviews the recent advancements
in this field, particularly on multiple testing with false discovery rate (FDR) control.

The generic problems of multiple testing that arise from feature selection and anomaly detection
have long been acknowledged. For instance, consider the prostate dataset (§2, Efron, 2012), which
contains a genetic expression for n = 6033 genes measured on m; = 52 patients with prostate cancer
and mg = 50 normal control subjects. Let Xl(Jk ) indicate the expression level on gene i for patient j,
where superscripts k indicate whether the observation was collected from patient populations. To
identify whether genes have a causal link to the development of prostate cancer, we can formalize the
problem by testing the n null hypothesis Hy; : E[X i(o)] =E[X i(l)] for all ¢ € [n] and then compute the
p-value of the corresponding t-test, illustrating a typical multiple testing problem. Another crucial
application area of multiple testing is the detection of anomalous events in financial markets, which
includes monitoring for credit card fraud, cyber intrusions, financial market anomalies, and covert
communication. In financial economics, there is a growing focus on detecting extreme events in time
series data, often utilizing sequential change-point analysis (Lumsdaine and Papell, 1997; Andreou
and Ghysels, 2006; Fryzlewicz, 2014). One significant challenge is to identify anomalies in financial
markets quickly while controlling the number of false alarms. These large-scale inference problems
necessitate processing massive amounts of real-time estimates or testing thousands or even millions
of hypotheses with high frequencies, highlighting the importance of multiplicity adjustment.

In many areas of modern applied statistics, from genetics and neuroimaging (Pe’er et al., 2008)
to online advertising and finance (Harvey and Liu, 2015), massive datasets with thousands or even
millions of variables are consistently collected by institutions and online platforms. This expansive
data collection and complexity calls for new techniques for making large-scale statistical inferences,
which involve simultaneously performing inferences on many study units. Following this paradigm
shift in data collection, several phenomena arise particularly frequently, including sparsity, auziliary



sequences, and dependence. While these structures can be informative, they also pose challenges to
the design of testing methods. In response, the statisticians aim to answer the following questions:
(i) While using p-values is standard in hypothesis testing, is there a more powerful or robust statistics
that can better retain the structural information or accommodate complex scenarios? (ii) With the
removal of strong assumptions (e.g., i.i.d), in conventional methods, what is the minimal condition
to ensure a statistical guarantee, and what is the best guarantee we can get for general cases? (iii)
How can we design a more powerful testing procedure by extracting information from internal (e.g.,
sparsity and dependence) or external (e.g., auxiliary sequence) structure? (iv) Recent advancements
have shown that powerful testing procedures rely on a series of complex ranking statistics that must
be estimated from data. How can we improve estimation methods or even further accommodate the
inaccuracy of estimation? This review offers a selective overview of answers to the questions posed
above from both the theoretical and methodological perspectives.

Notation. Throughout the paper, we denote M or [m] = {1,...,m}. Let 1(-) denote the indicator
function that returns 1 if the condition is true and 0 otherwise, and |.A| denotes the cardinality of
set A. Consider two non-negative sequences {an }n>0 and {b, }n>0, if limsup a, /b, = 0, then write
an = o(by). Let 0{S;} with S; = {¢1,...,4;} be the sigma algebra generated by S;.

2 Problem Formulation

Consider m null hypotheses Hy 1, ..., Hom,m and summary statistics Xy, ..., X,, with a known null
distribution, e.g. p-value P; ~ Unif[0,1] and z-value Z; ~ N(0,1) under the null Hyp,;. A multiple
testing procedure involves making simultaneous inferences on m hypotheses:

Hp;: case i isnull versus Hi;: casedis non-null, i=1,...,m.

A testing procedure examines these summary statistics and decides which null hypotheses to reject.
Let Ho = {i : Hy; is true} be the set of true null hypotheses, Hi = M/Ho with M = {1,...,m}
as the set of non-null hypotheses, and R = {i : Hp; is rejected} is the rejection set. For clear
presentation, let ; = 1(i € Hp) be an indicator function that gives the true state of the i-th testing
problem. A selection error, or false positive, occurs if the practitioner asserts that Hy;, is false
when it is not. In multiple testing problems, such false positive decisions are inevitable if we wish
to discover interesting effects with reasonable power. Instead of aiming to avoid any false positives,
a practical goal is to control the false discovery rate (FDR) (Benjamini and Hochberg, 1995) small,
which is the expectation of false discovery proportion (FDP) among all selections:

FDR(R) = E [FDP(R)] where FDP(R) = % (2.1)
and a widely adopted variant marginal FDR (mFDR) (Storey, 2002) is defined as
E[IR N Hol]
FDR(R) = ——-. 2.2

More multiplicity-related error rates for simultaneous and selective inference is discussed in §A.1.
Similarly, the true discovery rate (TDR) is defined as the expectation of true discovery proportion
(TDP), which measures the power of the testing procedure:

RN H,|

TDR(R) = E[TDP(R)] where TDP(R) = PANER
1

(2.3)



The goal is to find the optimal rejection set R that maximizes the TDP(R) subject to FDR(R) < a,
where o € (0,1) is the target FDR level. The following proposition demonstrates that FDR and
mFDR are asymptotically equivalent under large-scale scenarios.

Proposition 2.1. Let R be the rejection set concerning m null hypotheses following a specific
decision rule, then FDR(R) = mFDR(R) + o(1) if the following two conditions hold: 1) there exists
an absolute constant 1 > 0 such that m™E[|R]|] > n, 2) Var(|R]|) = o(m?).

Proof of Proposition 2.1. Based on the definition

[TRNH E[[RNH
FDR(R) — mFDR(R) = E ||R|vf|] - JEU[|R|vf]”
[ |Rﬁ7‘[o‘ ‘Rﬂ?‘[o‘) ]
=K — -1(|R| >0
(B - ) >0 -
(E[R[—[R] [RNH ] ‘\R!—E\R\
=E : AR > 0)] < =
ERl m® 7O S TR

where the second inequality results from the fact that [RNHo| = 0 if [R[ = 0, and the last equation
follows |[R N Ho| < [R| and we write |R| = [R|/m. Note that conditions indicate that 1) E[|R|] > 7
with absolute constant 7 > 0, and 2) Var(|R|) = o(1). Following this, we have

_ _ 5 5112 /2 _
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where the inequality results from the Cauchy-Swartz inequality and then we finish the proof. O

We remark that establishing the asymptotic equivalence between False Discovery Rate (FDR) and
modified False Discovery Rate (mFDR) introduces a methodological advancement in large-scale
multiple testing. Under this framework, statisticians can devise methods that control the mFDR,
thereby achieving an asymptotic control over the FDR, i.e., FDR(R) < a + o(1), where the limit
is taken over the number of hypotheses m. Additionally, mFDR proves to be valuable in splitting-
based testing procedures (Gang et al., 2023a).If we decide hypotheses into M = M U M? and the
mFDR levels of rejections R' and R? are controlled at o correspondingly, we have:

E[|R' nHi|] + E [|R? nHE|]

FDR(R'UR?) =
mFDR( ) E[[RY V1] + E|R[V 1]

_E[RINM] B[RV
E[|RY v 1] E[|RY V1] +E[R? V1]
mFDR(R1)<a
E[RPOHG] B[RV
E[|R?|v1] E[RYVI1]+E[R? V1 ~ "~
mFDR(R2)<a

where Hy = My N R and H3 = M N R% Hence, compared with FDR, mFDR demonstrates
robustness to splitting and merging, which is widely adopted in handling sophisticated dependence
structure (Wasserman and Roeder, 2009; Dai et al., 2022a; Gang et al., 2023a).



2.1 General Framework for Multiple Hypotheses Testing

In this subsection, we present a general framework to solve the multiple hypotheses testing problem.
Given summary statistics (X;)icpm in correspondence with the null hypotheses (H ;)icm, then the
statistical decision framework can be summarized into the following three-fold procedure:

Step 1 (Ranking) Generate the ranking statistics T; = ¢;(X;) for each i € M, where ¢; : R — R
denotes the transformation function which can be either pre-determined or data-dependent.

Step 2 (Estimation) Utilize a pre-determined estimation function FDP : RxR™ i R to estimate
the FDP(R:) by FDP(t) for (1;)iem, where Ry = {T; <t :i e M}.

Step 3 (Thresholding) Given the designated FDR control level o € (0,1), choose the maximal
threshold of ranking statistics with estimated FDP controlled at level a:

to =sup{t €T : ﬁ’(t) < a},
within candidate threshold set 7 and output rejection set as Ry, = {T; < to : i € M}.

We remark that almost all existing testing methods can be attributed to the procedure above. Note
that the cornerstone of a testing procedure lies in the construction of ranking statistics and FDP
estimators, which are meticulously designed to maximize TDR while achieving FDR control.

3 Conventional Methodologies

Multiple testing stands out as a valuable approach for extracting meaningful insights from extensive
datasets. It serves as a powerful tool for identifying significant features among multiple candidates.
In genetic research, it facilitates the detection of regulatory relationships based on gene expression
level data (Tusher et al., 2001; Nyholt, 2004; Sun and Wei, 2011); in finance, it helps in making
trading strategies or financial asset allocation (Harvey and Liu, 2015; Wang and Ramdas, 2022); in
astronomy, it’s applied to capture astronomical features contained in abundant data (Miller et al.,
2001); in the realm of data visualization, it serves to capture potentially interesting structure (Zhao
et al., 2017). The widespread adoption of multiple testing can be attributed to its effectiveness
in feature detection under a robust statistical framework with error rate control. In this section,
we discuss the conventional methodologies to provide an overview of celebrated solutions, where
summary statistics (X;);eam are assumed to be i.i.d generated from homogeneous pools. For detailed
discussions on heterogeneous scenarios, refer to §4, and for dependent scenarios, refer to §5.

3.1 Benjamini-Hochberg (BH) procedure

Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg, 1995) stands as one of the most
celebrated multiple testing procedures in the modern era. Given p-value as summary statistics for
each hypotheses i € M, denoted by (P;);er, where the null p-values are i.i.d uniform on [0, 1], i.e.,
P; ~ Unif[0, 1] for all ¢ € Hy. From the classical (frequentist) view, we suppose that the set of true
null hypotheses Hj is fixed, and the expectation of FDR is taken with respect to the randomness
induced by (P;)ien,. Specifically, under the decision framework in §2.1, BH procedure follows

mt
YL (P <t)
The BH procedure is intuitively straightforward in that it ranks hypotheses in the order of p-values,

and rejects those with small p-values, i.e., stronger statistical evidence against null. The following
theorem shows that BH procedure ensures a finite-sample FDR control at designated level a € (0, 1).

BH: 7,=P, FDP(t)= (3.1)



Theorem 3.1. The BH procedure controls FDR at a|H|/m in finite sample.
Proof of Theorem 3.1 (Martingale). Denote F'(t) = |R: N Ho| and R(t) = |R¢| V 1. Note that

to =sup{t € (0,1) : mt < aR(t)}. (3.2)

For any potential threshold ¢ € [0, 1], we define the filtration as F; = o{(L(P1 < 7),...,1(Pp <
7)) : 7 € [t,1]}. Following this, for all 7 < ¢, it holds that

Fl=YELE<n)|A=Y ELP <) |1P <)) =Y “1(P<t)=—F().

7) | g{:o | iezH:o [1( ) [ 1( )] g{:o ( )= F@)

(3.3)

Notes that (3.3) indicates that E[F(7)/7|F:] = F(t)/t and thus t — F(t)/t is a backward martingale.

Furthermore, t, is a stopping time with respect to the filtration (F;),c[0,1), and the optional stopping
]

theorem (Grimmett and Stirzaker, 2020) gives that E[F(ty)/ta] = F(1) = |Ho|. Thus,
IRt N Hol F(ta) a F(ty) |Ho|
FDR(R; ) = E | e 701} _ L(R(ty <& g |Hl)) _THl
(o) [ Rt | V1 R(ta) (Rlte) > 0)] <55 ta “

where the third equation results from the threshold choice t, = sup{t € (0,1) : mt < aR(t)} and
1(R(ta) > 0) <0, and then we complete the proof via the martingale arguments. O

Proof of Theorem 5.1 (Leave-one-out). Let aj = aj/m. Note that the decision rule of the BH pro-
cedure can be written as 7 = max {T EM: P < %} Following this, the candidate thresholds
can be considered discrete such that 7 = {o;}jem. Thus, it holds that

E[%Wﬂ ZZ E[L(Re,| = j) - 1 (P < )] (34)

i€Ho j= 1

Let Ry, i—o be the rejection set by apply BH procedures on (F;);cpm with P; substituted by 0. Note
that 1(|R¢,| =7) - 1 (P < o) = 1(|Re,i0] = 7) - L (P < o) for all (4,5) € Ho x M. Thus,

. ) aj .
E[L(Re,| =) 1 (B < 0))] = P(P; < a5) - B[Rty inol = ) = 22 - P(Rigiol =), (3.5)

where the first equation results from the independence due to the substitution, and the last equation
follows the uniformity of p-values under the null. Combine (3.4) and (3.5), we can get

[Res (130l |7'10!
FDR(R | — ]P) R _
(Ree) |: ‘Rta‘ V1 Z Z (1 ta,z—>0| j) <
1€Ho =1
and then we complete the proof via the leave-one-out arguments. 0

Here, we provide two different proofs of the BH procedure, one from the martingale perspective
and the other from the leave-one-out perspective. These perspectives have inspired various follow-
up studies, which we will discuss in detail later in this paper, e.g. in §3.2, §4.1, §5.1, and §5.2.
We remark that the BH procedure is nearly optimal when the null hypotheses have exchangeable
priori, and nearly all true, i.e., |Ho| &~ m. However, in most scenarios, the BH procedure tends to be
conservative due to the provable control level at (|Ho|/m)-« as shown in Theorem 3.1. Additionally,
the lack of consideration for the discriminant prior information can result in significant power loss
(Lei and Fithian, 2018). The remedies for over-conservativeness are presented in the following
subsection, and the latter problem then gives rise to a distinct set of challenges—multiple testing
with side information—which we provide a comprehensive discussion in §4.
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Figure 1: Hlustrations of Storey’s 7y and structural information used in BC procedure: distribution
of estimation (left), bias-variance tradeoff (middle) with different A € (0, 1), and symmetric structure
of p-value under the null, with shaded areas denoting rejection region and false rejection estimation.

3.2 mp-Adaptive BH Procedure: Remedies for Over-Conservativeness

In this subsection, we first the present remedies for the over-conservativeness issue of BH procedure.
When proportion mg = |Hg|/m is known, the threshold can be choosed as t,, = sup{t € R : FDP(t) <
a/mo} to close the gap. However, proportion 7 is usually unknown in practice. Nonetheless, there
exists valid estimators 7y of 7y such that the BH procedure with thresholding taken at ¢, = sup{t €
R : Fﬁ(t) < a/mp} continues to control the FDR under independence. Note that the most
celebrated estimator of null proportion is introduced by Storey et al. (2004):

fo(N) = - Z,j;i ]i(i =

and more estimators of null proportion are discussed in Benjamini et al. (2006); Jin and Cai (2007),
where Storey’s and Benjamini’s estimators are tailored for p-values and JC’s estimator accommo-
dates more general choices of summary statistics. These procedures are often called the mp-adaptive
BH. We remark that the intuition behind Storey’s null proportion estimator () in (3.6) is that:

_IEYMAPZN) | Yien LB 2N [Hol
N m(l —N) ~ |Hol-(1—=X) m
%WO.P(RE)\HG%O) =my, VAe(0,1),
1-A

where "&" arises from the law of large numbers. Hence, 7g()\) is a consistently conservative estimator
of mp for all A € (0, 1), and there is an inherent bias-variance trade-off in the choice of A as in most
cases when A grows smaller, the bias of 7g(\) grows larger, but the variance becomes smaller. To
choose a proper A, Storey (2002, 2003) propose a bootstrapping method and a spline-smoothing
method, respectively. Langaas et al. (2005) investigate the choice of \ systematically and develop
a class of estimators based on nonparametric maximum likelihood estimates (MLEs). With a slight
modification in the rejection region, Storey et al. (2004) has also shown that the 7g(\)-adjusted BH
procedure can guarantee a finite-sample FDR control at level (1 — Al%ol) . o for all A € (0,1) and
please refer to §A.3 for a detailed discussion.

If we choose the threshold A adaptively under the BH procedure by taking 7p(1 — t) as the null
proportion estimator for any rejection threshold ¢ € (0,1), then we have

VA € (0,1), (3.6)

7o(A)

o mt mt

< o-
TS AR =1t

P« O
N SR T

7



which is precisely the Barber-Candeés procedure (Barber and Candeés, 2015, 2019) by taking p-values
as the summary statistics. Formally, the BC procedure can be summarized as below:

L4+ 30 1(P > 1—t)
Z?;MPZ'S’S) ’

BC: T,=P, FDP(t)= (3.7)

where threshold follows t, = sup{t € (0,0.5] : Pﬁ(t) < a}. Intuitively, BC procedure utilizes the
symmetry of p-values such that 7_+0| > iem, L(P; > t) and ﬁ > iem, L(P; > 1 —t) is close due to
the law of large number. The fohowing theorem shows that BC procedure ensures a finite-sample
FDR control over the designated control level « € (0,1).

Theorem 3.2. The BC procedure controls FDR at « in finite sample.

Proof of Theorem 3.2. Note that the FDR under the BC procedure is upper bounded by

FDR(R, ) <E | 2zicto LB Sta) 1430, 0(R>1—t)
T 2ieny LF 2 1 —ta) >oimy L(P < ta)
<E 2ieny L(F < ta) N .
T e, WPz T ta) |

where the first inequality results from Ho C M, and the second inequality follows
to = sup{t € (0,0.5] : Fﬁ(t) < a}.

Define P, = P; if P; < 0.5, otherwise P; = 1 — P;. Following this, denote Po={P;:ieHo} and let
P(l) <... < P(mo) be the order statistics over set Py with mgy = |Ho|. Without loss of generality,
assume that the first |Ho| hypotheses are null, i.e., Ho = {1,...,|Ho|}. Consider the stopping time
J =max{j € Ho: 15(j) < tqa}, and such J must exist since ta € (0, 0.5]. Thus, it holds that

Yieng P <ta)  (1-By)+---+(1—-DBy) _ 147
1+EiEH0]1(P2'21_ta) 1+B1+---+ By 1+By+---+ By

_17

where let B; = 1(F;) > 0.5) for all i € Hg and the order of F;)’s is inherited from p(z-)’s ranther than
the magnitude of P;’s. Note that (B;)icw, are independent Bernuolli random variables following

B; % Bernoulli(0.5). By the optional stopping lemma (Barber and Candes, 2015) (see Lemma C.1

for details), it holds that E [ﬁ} < 2 and then the theorem follows. O

We remark that while the BC procedure guarantees that FDR is no larger than « (see Theorem
3.2), and BH procedure ensures FDR at level [Ho|a/m (see Theorem 3.1), it does not imply that
BC procedure dominates BH procedure (Li and Zhang, 2023). In the situations where the non-null
information is less significant, the BC procedure exhibits substantial sub-optimality, primarily due
to the substitution of ) ;5 1(F; > 1 —1t) with > ;.\, 1(P; > 1 —t). Furthermore, it is noteworthy
that both BH and BC procedures achieve finite-sample FDR control. In comparison, Storey’s 7g-
adaptive BH only ensures FDR control asymptotically (Storey et al., 2004). All these procedures are
rooted in p-value ranking and aim to optimize power with a more concise FDP (FDR) estimation.



3.3 Local FDR: A Empirical Bayesian Intepretation

The BH (and BC) procedure is established upon a frequentist view, where H is supposed to be
fixed, and expectation of FDR is taken with respect to the randomness induced by (P;)iep,- In this
subsection, we re-examine the multiple testing problem from the Bayesian perspective and assume
that the set of null hypotheses Hy is random with summary statistics (X;);ea in correspondence.
Suppose that (X;);enm follows a two-group mixture model:

0; S Bernoulli(r), X; % (1—0,)fo +0if1, Vie M, (3.9)

where null distribution fo under Hy ; is specified and non-null distribution f; under Hy ; is unknown.
In correspondence, the definition of FDR in (2.1) is modified with expectation taken over (X;);ca
and Hg jointly, The most celebrated multiple testing procedure from Bayesian perspective is the SC
procedure (Sun and Cai, 2007), which is constructed upon local false discovery rate (Lfdr) (Efron
et al., 2001; Sun and McLain, 2012; Efron, 2012). Specifically, the Lfdr statistics is defined as

(1 —m)fo(Xi)
(1 =m)fo(Xs) + 7 fr(X;)
and Sun and Cai (2007) has shown that the Lfdr ranking and thresholding rule is optimal in the sense

that it maximizes TDR subject to a controlled FDR. Here, we first consider the oracle procedure,
where function Lfdr; : R — R for all i € M is known. The SC procedure follows that

Lfdr(X;) :==P(6; = 0|X;) =

(3.10)

™ Lidr(X;) 1(Lidr(X;) < t)
ST 1 (Lidr(X;) < ¢)

SC: T =Lfdr(X;), FDP(t)= 2 (3.11)

We remark that the oracle SC procedure ensures a finite sample FDR control intuitively, as

Sy L(Ldr(X;) < to)(1— 6y)
Sy L(Lfdr(X;) < to)
SN AT IS T

(Xi)iem S L(Lfdr(X;) < ta)
. oy Lidr(X;) 1(Lfdr(X;) < ta)
= B(Xi)iem [ S T(Lfdr(X;) < tq)

FDR(Rito) = E(x;)ienm |:]E,HO|(X7;)~L€M [ L(R(ta) > O)”

A(R(t) > o>}

(R(ty) > 0)] <a,

FDP(to) in (3.11)

where the first equation arises from the Baye’s theorem and the last equation results from indepen-
dence and definition of Lfdr in (3.10). In many applications, the oracle Lfdr function is not known
and must be estimated. We first define a weak-consistent Lfdr estimator as below.

Definition 3.3. L/fd\r(av) is a weak-consistent if L 37, }L/fd\r(Xz) — Lfdr(X;)| 0.

We remark that I_Tfar(m) can be estimated with a two-fold procedure nonparametrically: firstly,
a consistent estimation of mixture density f = (1 —7) fo + 7 f1 can be obtained via standard kernel
density estimation with a bandwidth chosen by cross validation (Silverman, 2018); secondly, the
non-null proportion can be estimated using the frequency-based approach proposed by Jin and Cai
(2007); Tony et al. (2011), sharing the form that, for fixed v € (0,1/2)

(y) = (1 - % Xn: eé cos(tXl-)>

=1

m
=1-m! Zcos ( 2+ log le-) , (3.12)
t=v/2vlogm i=1

9



which is near minimax optimal for the Gaussian mixture model, i.e., f(z) = (1 —m)¢(z)+7 [ ¢(z —
w)dH () where H is the mixing distribution. Compared with Storey’s 7y, the JC estimator outper-
forms in its consistency and Storey’s 7y is biased in general (Langaas et al., 2005). However, the JC
estimator is constrained by its dependence on the assumption of Gaussian distribution family. The
following theorem shows that SC procedure ensures an asymptotic FDR control at level a € (0, 1).

Theorem 3.4. Given (X;);enrm 1.1.d from (3.9), the SC procedure at level a € (0,1) with any weak-
consistent Lidr estimator (see Definition 3.3) that controls FDR asymptotically under assumptions:
(C1) there exists continuous functions Dy and D; such that Dy(t) = P(Lfdr(X) < t) and Dy(t) =
E[Lfdr(X) 1(Lidr(X) < t)] for all ¢ € [0,1], and (C2) there exists constant to, € (0,1] such that
Di(tso)/Do(tso) < a where Dy and Dy are defined in (C1).

Proof of Theorem 3.4. See §B.1 for a detailed proof. O

We remark that conditions (C1)-(C2) are standard in multiple testing literature from the Em-
pirical Bayesian perspective (Storey et al., 2004; Sun and Cai, 2007; Cao et al., 2022). Note that
(C1) guarantees the continuity of the mixture model and the corresponding decision function, and
(C2) ensures the existence of the critical value to asymptotically control the FDR at level .

Power Distortion in Normalization and Standardization Suppose the practitioner obtains
the original summary statistics X; for each hypothesis from the experiments. For simplicity, assume
that X; is sampled from a normal distribution with Var(X;) = 0'12, and aims to test Ho; : p; = 0
versus Ho; : p; # 0. Following convention, it’s common practice to use standardized z-values Z; =
X;/o; and normalized p-values P; = 2®(—|Z;|) for computational simplicity. Thus, in conventional
FDR control approaches, the default choice of ranking statistics is the p-value. However, Sun and
Cai (2007) and Fu et al. (2022) have respectively shown that normalization and standardization
can lead to suboptimality. For illustrations, we provide the numerical results in Figure 2, where
the oracle procedures refer to the Lfdr-based methods conditioned on p-values P;, z-values Z; and
heteroscedastic statistics (Xj, 0;) respectively. We remark that (i) such power distortion arises from
data compression during pre-processing (standardization, normalization), resulting in a significant
power loss of p-value and z-value oracle procedures compared with the heteroscedasticity-adjusted
one, and (ii) the Lfdr-based procedure outperforms BH procedure since it provides a stricter FDR
control and takes into account information from alternative distributions. Please refer to Fu et al.
(2022) and §6 in Gang et al. (2023a) for further discussions and comparisons.

4 Multiple Hypotheses Testing with Side Information

Conventional multiple testing procedures implicitly assume that data are collected from repeated
or identical experimental conditions, implying that hypotheses are exchangeable. However, in many
applications, data are known to be collected from heterogeneous sources. Moreover, relevant domain
knowledge, such as carefully constructed auxiliary sequences from the same dataset (Liu, 2014; Cai
et al., 2019) and external covariates or prior data from secondary data sources (Fortney et al., 2015;
Scott et al., 2015; Ignatiadis et al., 2016; Zhang and Chen, 2022), is often available alongside the
primary dataset in many studies. Furthermore, side information can be categorized as follows: (i)
continuous variables, including the minor allele frequency, the prevalence of bacterial species in
genetics, and sample variance of experiments; (ii) discrete variables, including location in 1D, 2D,
or 3D coordinate systems from satellite monitoring and neuroimaging, and order of gene expression
data when dealing with RNA-Seq; (iii) categorical variables, including the affiliations or sub-groups.
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Figure 2: Numerical results of procedures based on different summary statistics: varying null cases
(left) follows normal mixture model X; ~ (1 —m)-N(0,02) +7-N(2,02) with o; ~ Unif[0.5,4] and
7 from 0.1 to 0.3; varying significance cases (right) follows X; ~ 0.8 - N(0,02) + 0.2 - N'(u, 0?) with
o; ~ Unif[0.5,4] and p from 2 to 4. P; and Z; are normalized and standardized in correspondence.

See Figure 3 for an illustration. For instance, consider testing for the association of 400,000 single-
nucleotide polymorphisms (SNPs) with each of 40 related diseases. If gene-regulatory relationships
are known, then we could expect SNPs near genes to be associated with related diseases.

Following this, extensive research efforts have been devoted to grouped hypotheses testing (Cai
and Sun, 2009; Hu et al., 2010), ordered hypotheses testing (Lei and Fithian, 2016; Li and Barber,
2017), and covariate-adjusted hypotheses testing (Ignatiadis et al., 2016; Lei and Fithian, 2018;
Zhang and Chen, 2022; Leung and Sun, 2022) to fully exploit the power of statistical inference when
external or structural information is provided. Since the grouped and order hypotheses testing can
be viewed as special cases of the covariate-adjusted testing, the problem with side information can
generally be framed as the covariate-regulated models. For each hypothesis, the practitioner obseves
a summary statistics X; € R alongside a covariate s; € S with S C R%. Following the literature, we
consider a two-component mixture model:

0; % Bernoulli(my,)  Xilsi S (1— 0:)fo + 0ifrs,, VieM, (4.1)
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Figure 3: Illustrations of informative side information in multiple testing: ordered hypotheses (left)
with shaded area as potentially significant features (m; > 0), and two-dimensional clustering pattern
(right) on a 100x100 lattice with blue dots as the ground-truth features with = = 0.8.

where the null distribution fy under Hy; is specified and the non-null distribution f; s, under Hy ;
is unknown. Compared to the conventional two-component mixture model in (3.9), the varying null
probability 7, reflects the relative importance of each hypothesis given the covariate information
s; and the varying alternative density fi s, emphasizes the heterogeneity among the signals. In this
section, we introduce two main approaches towards covariate-adjusted testings: weighted BH (see
§4.1) and generalized BC procedure (see §4.2). These approaches are extensions of the standard BH
and BC procedures discussed in §3.1 and §3.2, respectively.

4.1 Weighted BH (WBH) Procedure

Weighting is a widely used strategy for incorporating side information into FDR analyses (Benjamini
and Hochberg, 1997; Genovese et al., 2006; Basu et al., 2018). Following the literature, let (w;);ea be
a set of weights, where the collected p-values (P;)eaq is independent of weights (w;);ea conditioned
on the set of null hypotheses Ho. The WBH procedure can summarized below:

mt
Yoy L(Pjwi < t)’

where the WBH procedure is equivalently using P;/w;’s as the input of standard BH procedure.
The following theorem posits that WBH procedure ensures FDR, control under certain regulations.

WBH: T, = P,/w;, FDP(t)= (4.2)

Theorem 4.1. Suppose that (F;)en is independent of (w;)iem conditioned on Ho with > ;g w; <
m. The WBH procedure controls FDR at level « in finite sample.

Sketch proof of Theorem 4.1. The proof is akin to that of Theorem 3.1. Let o;j = j/m and Ry, i—0
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be the rejection set by apply BH procedures on (P;);ea with P; substituted by 0

p |0l _ 5 z L(Re,| = 7)1 (P < w; - a)

zEHJl

= Z Z]P)(Pi <w; - Oéj) . P(|Rta,iﬂol =7)

1€Ho j—l

i
Y =t Ywsa G
i€Ho 7=1 ZG’HO

where the third equation results from conditional independence and the inequality follow Zie?—to w; <

m. Then, we complete the proof of Theorem 4.1. O

The original condition in Genovese et al. (2006) requires > ;. ,w; < m, which is slightly stronger
than the one we used. Here, we provide an intuition behind the weight condition. For exchangeable
hypotheses, as demonstrated in §3.2, we can use BH procedure at level ma/|Ho| as a remedy for the
over-conservativeness, which is equivalently using P;/w; with weight w; = m/|Ho|. To accommodate
the side information into the testing procedure, Li and Barber (2017) proposed to use w; = T=rG)
which is a natural extension to w; = m/|Hp| under the model in (4.1); and Cai et al. (2022)

m(si)

suggested using w; = = (50 to separate the clustered nonnull p-values more effectively, motivated

by the optimality theory in (§4.1, Cai et al., 2019), which we will discuss in detail later. We remark
that both weights are valid under regulations, and the main challenge lies in estimating function 7
from data. For instance, Cai et al. (2022) proposed a model-free estimation via screening:

ia(s) = 1 - iz Kn(s,5) 1B > A)
(L=X) -2 Kn(s,si)

VA e (0,1), (4.4)

where Kp, : R? x R? — R is a positive, bounded, and symmetric kernel function with bandwidth h
chosen by cross-validation. The estimation in (4.4) can be viewed as a kernelized Storey’s 7o in (3.6),
screening over the collected side information {s;};ierr. We remark that WBH procedure with weights
constructed upon covariate-adjusted non-null proportions shows significant power improvement with
mild conditions. However, it still has limitations: (i) it neglects the varying alternative density fi s,
that emphasizes the heterogeneity among the signals; (ii) given the low convergence rate of kernel
methods, the estimation of non-null is not that accurate in practical settings, leading to power loss.
Fortunately, statisticians have developed the optimal theories and a series of powerful “distribution-
free" tools to address these issues, which we will discuss in detail in the next section.

4.2 Generalized BC (GBC) Procedure

Following the covariate-adjusted two-component mixture model in (4.1), Cai et al. (2019) has shown
that the optimal procedure for the covariate-adjusted testings is the ranking and thresholding pro-
cedure upon the conditional local false discovery rate (Clfdr), defined as

Clfdry, (1) = P(6; = 01X;, 50) = (7= ()1f0—(;r())f5rX}l — (4.5)

Some astute readers may observe that practitioners could apply SC procedure over estimated Clfdr’s
to control FDR with covariate adjustment. However, as discussed in §4.1, 74 is hard to estimate,
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especially in the presence of multi-dimensional side information, since the convergence rate in-
creases exponentially with dimension d(S), let alone estimating the entire Clfdr. To address these
issues, Lei and Fithian (2018) has first proposed a two-fold solution. First, they suggested using
a model-based method to estimate CﬁfErs, leading to a faster convergence rate. Second, they pro-
posed controlling FDR. using a “distribution-free" filter—generalized BC procedure. This approach
provides theoretical guarantees regardless of the accuracy of (ﬁﬁrs estimator. Here, we adopt the
GBC procedure proposed by Leung and Sun (2022), which is a natural generalization of the method
used in Lei and Fithian (2018); Zhang and Chen (2022), sharing a similar high-level idea. Let
A: R xS — R be an assessor function that approximates Clfdr, i.e., CﬁfErs(X) = A(X,s), and
cs(t) = P(A(X, s) < t|Hp,s) be the conditional CDF under the null. Suppose that ¢, is continuous
and strictly increasing. Following this, the GBC procedure can be summarized as
. L Y TP _ L+ Z;& ]l(csz‘('A(Xi? 52)) >1- CSi(t))

GBC: T, =A(X;,s;), FDP(t) ST (AKX, ) < 1) , (4.6)
and the candidate rejection is chosen as 7 = (0, tmax| With tmax = max{t : ¢, () < 0.5 for all }.
The intuition behind the GBC estimator in (4.6) is straightforward. It constructs covariated-
adjusted p-values cs, (A(Xj;, s;)) using the known fy. Specifically, the FDR control is realized via

L+ ien, LA(XG, si) < t)

i TA(XG, ) <t) V1

L+ D en, Les (A(XG, 54)) < cs,(2))

T SL AL s) <H V1

L D, Mesi (A(Xiy i) 21— es,(1))
Do T(A(XG, ) <t) V1 ’

FDP(R;,) <

where the “~ " follows from the fact that s, (A(Xj, s;)) is a uniformly distributed random variable
over [0,1] under Hy;. The following theorem shows that given pre-determined assessor function A,
the GBC procedure ensures a finite-sample FDR guarantee at designated level a € (0, 1).

Theorem 4.2. Let A: R xS — R be a pre-determined assessor function and ¢s; : R — R be the
null CDF in correspondence. The GBC procedure controls FDR at « in finite sample.

Proof of Theorem 4.2. The proof is akin to that of Theorem 3.2. Please refer to §B.2 for details. [

We remark that the assessor-based GBC procedure is favorable as the FDR guarantee does not
depend on the quality of approximation for Clfdr, which is desirable as Clfdr is extremely hard
to estimate in practice and only affects the power of the testing procedure. Besides, compared
with directly apply BH or BC procedure on covariate-adjusted p-values ¢, (A(X;, si))’s, the GBC
procedure outperforms by ranking with A(Xj, s;)’s, i.e., the assessor of Clfdr, (X;)’s, aligning with
the optimal theory that suggests a Clfdr-based procedure. For illustration, we briefly introduce the
three-component beta-mixture model used in Leung and Sun (2022), formulated as

B(Xi)|si ~ {1 = m(si) — mp(si) Yho(-) + m(si)h(-) + mr(si)he (),  Vie M,

where ® : R +— [0,1] is a regulation function, the conditional non-null proportions m(-), m,(-) are
characterized by softmax distributions and the density functions hy(+), h,(-) follow beta distribu-
tions.Specifically, let 5; = (1, s;) and the non-null proportion is then modeled as

exp(6] )

exp(0)' 3;)
T3, Ty Tr(si) =
1+ exp(0, ;) + exp(0, 5;)

14 exp(6]5) +exp(6,5)’

TI'Z(SZ') =
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Figure 4: Numerical results of the covariate-adjusted procedures, with AdaPT proposed by Lei and
Fithian (2018) used as an example of GBC procedures: continous cases (left) follows normal mixture
model Z; ~ (1—75,)-N(0,1) +7s,-N(ps;, 1) with s; ~ Unif[0, 1], s, = s2/2, and ps, = s;p; discrete
cases (right) follows X; ~ (1 —7g,) - N(0,1) + 7, - N'(p, 1) with s; = i and 7, is set as the ordering
case in Figure 2. Here, p varies from 2 to 4, and P; = 2®(—|Z;|) is normalized in correspondence.

and the conditional density function follows
hi(u) = B(ki(si), %) MO (1 =), by = r(u) = Bk (si),9) " ufr G0 (1 — ),

where k;(s) = {1+exp(—3,'3)} " and k,(s) = {1+exp(—5,3)}~!. Following this, the practitioners
can estimate the parameters using EM algorithms. The beta mixture model has long been identified
as a flexible modeling tool for variables taking values in the unit interval (Parker and Rothenberg,
1988; Ferrari and Cribari-Neto, 2004; Markitsis and Lai, 2010), and similar models are adopted
in Lei and Fithian (2018); Zhang and Chen (2022); Leung and Sun (2022) for covariate-adjusted
testings. However, such methodology still has limitations: (i) as noted earlier, the power of testing
procedure relies heavily on the choice of assessor model, which is manually decided; (ii) while GBC
ensures a finite-sample FDR control with a pre-determined assessor, in practice such an assessor
is estimated from data, resulting in degradation to asymptotic control. This is because estimated
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A is not independent of (Xj,s;);cx, and Theorem 4.2 no longer holds. To avoid dependence,
the data-driven conclusion is achieved by showing that: firstly, by using an oracle assessor, i.e.,
A* that maximizes the risk of the EM algorithms, finite-sample is ensured following Theorem 4.2.
Secondly, show that the data-driven A is a consistent estimation of oracle .A* based on the property
of EM estimators (McLachlan and Krishnan, 2007). See Zhang and Chen (2022); Leung and Sun
(2022) for detailed proof of data-driven procedures. Moreover, Lei and Fithian (2018); Leung and
Sun (2022) have developed an iterative approach with slight modifications to achieve finite-sample
control. Very recently, Gang et al. (2023a); Li and Zhang (2023) have proposed generalized BH
(GBH) procedures, which share a similar idea introduced in this section. Please see these papers
for further discussions.

5 Multiple Hypotheses Testing under Dependence

Observations from extensive testing scenarios often exhibit dependence. However, the traditional
FDR methodologies heavily hinge on the independent assumption, often overlooking the correlation
among hypotheses. Conventional methods like BH procedure have demonstrated FDR control valid-
ity under certain regularity conditions (Benjamini and Yekutieli, 2001; Finner et al., 2009; Ramdas
et al., 2017a). However, in various contexts within the field of economics, finance, and genetics,
these assumptions may not hold, necessitating diligent verifications by practitioners. Furthermore,
such dependencies frequently compromise the statistical accuracy of estimation and testing (Efron,
2007; Schwartzman and Lin, 2011), resulting in heightened variability in outcomes and a potential
lack of reproducibility in scientific findings (Owen, 2005; Finner et al., 2009). In this section, we
introduce the dependence-robust conditions, methodologies, and statistics respectively in detail.

5.1 Positive Regression Dependence Set (PRDS)

In this subsection, we first introduce the notation of positive regression dependence set (PRDS), one
specific type of dependence structure that the BH procedure can remain robust with the removal
of the "i.i.d" assumption. The PRDS property is defined below.

Definition 5.1. A set A C R™ is said to be increasing if x € A implies y € A for all y > x. We
say X = (X1,...,X;,) has a positive regression dependence on the subset Zy C M (PRDS) if for
any i € Zp and increasing set A C R™, the function z — P(X € A | X; < ) is increasing.

We remark that the original definition proposed in Benjamini and Yekutieli (2001) requires that
the function P(X € A | X; = z) is increasing, which is stronger than the condition in Definition 5.1.
This version of PRDS first is used by Finner et al. (2009) and please refer to Lemma 1 in Ramdas
et al. (2017a) for detailed proof. We present an illustrative example of PRDS scenarios below.

Example 5.2. Let X = (X1, ..., X,,) be a multivariate gaussian vector with distribution N (ju, ¥).
X is PRDS on subset Zo € M if and only if ¥;; > 0 for all ¢ € Hg or j € Ho.

The argument in Example 5.2 can be easily verified using the conditional distribution of multi-
variate Gaussian distribution and employing a proof by contraction. In an informal sense, it implies
that X; exhibits a positive correlation with each entry of the random vector if ¢ € Hgy. Following
this, we will demonstrate the robustness of the BH procedure with PRDS property.

Theorem 5.3. If p-values (P;);caq is PRDS on the set of true nulls hypotheses Hgy, BH procedure
at level a € (0,1) controls FDR at «|Hp|/m in finite sample.
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Proof of Theorem 5.5. Write a;j = aj/m and B; ; = P(|R¢,| > j | P; < o) for all (4,5) € Ho x M,
and fjm4+1 = 0 for all i € H. Note that |R| is a decreasing function of the p-values. Thus,

B(Re,| 25+ 1| P <) 2 PR, > j+ 1| Bi<ag), V(i) eHox M,  (5.1)
based on the PRDS property in Defintion 5.1. Following (5.1), it holds that

Bij = Bijr1 =P(Rea| 25 [ P < aj) = P(|Reo| 25 + 1| P < aj1)
2 P(|Riol 25 [ P <) =P(|Reo| 2+ 1| P < ) =P(|Re, | =7 | B < ). (5.2)

Note that the decision rule of the BH procedure can be written as 7% = max {7’ EM: P <2
Following this, the candidate threshold set can be considered discrete such that 7 = {a;}jem. By
combining (5.2) and the arguments above, we can get
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where the first inequality results from the uniformity of p-values such that P(P; < o) < o, and
the last equality arises from 3; 1 = 1 based on the rejection rule of the BH procedure. O

For instance, consider testing Ho; : pu; = 0 versus Ho; : p; > 0 for X ~ N (g, ) with X;; > 0
for all 7, j € M. Following Example 5.2, one-sided p-values P; = ®(X;) are PRDS on Hg as ®(z) is
monotone increasing, thus allowing for direct application of BH procedure. However, for two-sided
hypotheses, P; = 2®(—|Xj;|) does not form a co-monotone transformation and p-values may not be
PRDS, which remains an open question. There have been few generic models that generate PRDS
p-values. Despite the Gaussian model with non-negative correlations, in recent years researchers
have shown that recursive order statistics (Loper et al., 2022) and conformal p-values (Bates et al.,
2023) are also PRDS. Please refer to §A.4 for a brief introduction to conformal p-values.

5.2 Benjamini-Yekutieli (BY) Procedure

In this subsection, our focus is on FDR control for p-values with arbitrary dependence structures. As
demonstrated by Benjamini and Yekutieli (2001) in the most adversarial scenario, the BH procedure
needs to pay an additional price of S, = Zznl ~ logm for a uniform validity. Following this, we

can employ the BH procedure at level a//Sy, for arbitrarily dependent p-values, summarized as:

mt - Sy,
S L(P <)

The following theorem shows that BY procedure ensures a finite-sample FDR control.

BY: T,=P, FDD(t)= (5.3)

Theorem 5.4. The BY procedure at level o € (0,1) controls FDR at «|Ho|/m in finite sample.
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Proof of Theorem 5.4. Let a; = «aj/m. Note that the decision rule of the BH procedure can be
written as 7% = max {7’ eEM: P <> } Following this, with BY adjustment on dependence, the
candidate threshold set can be considered discrete such that 7 = {a;/Sm }jem. Thus, we have

[Rert] - S 2w (2= )]

i€Ho j=1

= iil-lﬁz[ﬂ(\w=j>-ﬂ<a§;;<Pi<§_i>}

m m 1 -

- ZZf'E[l(IRtalsz(%sngg—fﬂ
zeyozzuzzj m m
U a Q.
<Y Y e[RRIz 1 (% <n < )]
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"1 oy ay |/H0’
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= ZEP(Sm =hs m> m
i€Ho (=1

where the third inequality results from the exchange of summation order and the last equation
ay

follows that P (S—: <P< %) = a/nSy, due to the uniformity of p-values under the null. O

While the BY procedure manages to ensure FDR control under arbitrary dependence, such ad-
justments are over-conservative, particularly in large-scale testing, and often unnecessary in practice.
Studies by Owen (2005); Finner et al. (2009) have revealed that high correlation leads to increased
variability in testing outcomes, resulting in irreproducibility of scientific findings. To address this,
Leek and Storey (2008); Friguet et al. (2009) investigated multiple testing under factor models and
demonstrated that subtracting common factors can substantially weaken the dependence structure.
Additionally, Efron (2007); Fan et al. (2012) discuss methodologies for incorporating the dependence
structure to obtain more accurate FDR estimates for a given p-value threshold.

5.3 False Discovery Control with E-Values

In this subsection, we focus on false discovery control with e-values, an approach aimed at addressing
dependency by leveraging a more robust statistical property. As a natural counterpart to the popular
p-variable in statistical inference, the e-variable exhibits greater robustness to model misspecification
and, notably, to dependence between the summary statistics. Following the definitions in Vovk and
Wang (2021)!, a p-variable is a random variable satisfies that P(P < «a) < « for all a € (0,1)
under the null, a generalization of conventional uniformity. In comparison, an e-variable is a non-
negative random variable satisfying E[E] < 1 under the null, which is generated from betting scores,
likelihood ratios, and stopped supermartingales (Wasserman et al., 2020; Howard et al., 2021; Shafer,
2021). Under the framework of multiple testing, we could further extend the definition of e-value,
as demonstrated in Wang and Ramdas (2022); Ren and Barber (2022).

Definition 5.5. We say (E;)ienm is a set of generalized e-values if } ;;, E[E;] < m.

'Realized values of e-variables or p-variables are called e-values or p-values, respectively.
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Note that for any valid e-value E, 1/E is a p-value since P(1/E < a)) < a based on the Markov’s
inequality with E[E] < 1 under the null. Following this, we introduce the e-BH procedure (Wang
and Ramdas, 2022) that substitutes P; with 1/FE; in standard BH procedure and is summarized as:

mt
i 1(1/E; <t)

The following theorem demonstrates that the e-BH procedure provides finite-sample FDR guarantee
for any generalized e-values (see Definition 5.5), irrespective of the dependence structure.

e-BH: T,=1/E; FDD(t)=

(5.4)

Theorem 5.6. The e-BH procedure at level a € (0,1) controls FDR at « in finite sample.

Proof of Theorem 5.6. Note that the decision rule of the e-BH procedure rejects all hypotheses with
e-value satisfying that E; > m/a|R4,|. Following this, it holds that

IRt N Hol 1(E; > m/a|Ry,|) E; a|Ry, | aE;

- REVER = = < . a e _ ]]_ R O 9

L= T S L T s = 2 e MIRuI>0)
i€Ho cHo icHo

where the inequality arises from the fact that 1(E > t) < E/t holds for all non-negative random
variable F and t € RT. Thus, we have

[« 2o o] < o 2]

i€Ho i€Ho

where the last inequality results from the definition of generalized e-values in Definition 5.5. O

We remark that the most surprising property is that the e-BH procedure controls FDR at level «
even under unknown arbitrary dependence between the e-values. Besides, there are several reasons
to work with e-values: they emerge naturally in the sequential settings; we know methodologies for
e-value construction in scenarios where p-value construction is challenging; e-values exhibit greater
robustness to misspecification or uncertain asymptotics in high-dimensional settings; and e-values
are more amenable to evidence aggregation (Vovk and Wang, 2021; Wang and Ramdas, 2022).

Very recently, a series of studies have been conducted to exploit the power of e-values in the
domain of multiple testing. Ren and Barber (2022); Bashari et al. (2023); Banerjee et al. (2023); Li
and Zhang (2023) have demonstrated that e-values can be constructed to aggregate testing results for
derandomization or conduct meta-analysis, e.g., F; = m1(i € R)/a|R|. Besides, Xu and Ramdas
(2023) has shown that for any arbitrary e-values, e-BH can be further enhanced via randomization
to improve the power of testing, e.g., E = E;/U with U ~ Unif[0, 1]. The field of e-values is rapidly
evolving, and readers are encouraged to consult the latest literature for detailed discussions.

6 Discussions and Other Topics

This article explores a set of newly devised techniques for multiple testing. However, it’s essential to
note that this overview is selective and does not encompass the entire spectrum of recent advance-
ments in this domain. Due to space constraints, we must omit discussions on various related testing
challenges in high-dimensional inference and regression models. Specifically, FDR control provides
a powerful regularization method for estimation of sparse vectors (Abramovich et al., 2005), large
covariance matrices (Bailey et al., 2019), Gaussian graphical models (Liu, 2013), and covariance
structure (Cai, 2017) in high-dimensional settings. Besides, simultaneous inference and variable se-
lection for high-dimensional regression model has also received much recent attention (van de Geer
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et al., 2013; Barber and Candeés, 2015, 2019; Dai et al., 2022a; Xing et al., 2023). Additionally, a se-
ries of recent papers have pioneered the application of multiple testing schemes in machine learning
problems such as multi-label classification (Angelopoulos et al., 2021; Marandon et al., 2022).

Traditionally, multiple testing is conducted offline, where all summary observations are received
at once, and all decisions must be made simultaneously. However, it is often at odds with modern
data-driven decision-making processes requiring sequential decision-making. This has led to the
development of online multiple testing procedures, which have been extensively studied in recent
years (Foster and Stine, 2008; Aharoni and Rosset, 2014; Ramdas et al., 2017b, 2018; Gang et al.,
2023b). Motivated by applications in mediation and replicability analyses, another natural variant
is to consider the scenario where a multivariate summary statistics is provided. The problem can
framed as testing the joint significance (JS) with composite null hypotheses or partial conjunction
null hypothesis (PCH), and its multiplicity adjustment is a topic of heated discussion (Dai et al.,
2022b; Wang et al., 2022; Dickhaus et al., 2021; Deng et al., 2023).
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Appendix for “False Discovery Control in Multiple Testing: A
Selective Overview of Theories and Methodologies”

A Supplementary Background

A.1 Multiplicity-Related Error Rates

Recap of Error Rates in Single Testing. When conducting a hypothesis test, there are two
kinds of errors: reject a null hypothesis when it is true (Type I error) or fail to reject a null hypothesis
when it is false (Type II error). Type I error occurs when a non-existent pattern is identified in the
data (false discovery), while Type II error occurs when an actual pattern goes unnoticed (missed
discovery). In practice, it is impossible to eliminate the risk of making decision errors. However,
the consequences of these errors usually differ, with Type I error considered a more serious mistake.
The rates of Type I and Type II errors are defined as probabilities of making these errors. In the
classical single hypothesis testing, the goal is to control the Type I error rate at a pre-specified level
« while minimizing the Type II error rate, i.e., maximizing the testing power.

Error Rates in Multiple Testing. In the multiple testing setting, it is desirable to assess the
overall performance of a testing procedure by combining all decisions. For instance, FDR and TDR,
as defined in equations (2.1) and (2.3), respectively, provide one kind of measurement for Type I
and Type II errors in some sense. The selection of an error rate in applications hinges on the specific
purpose of the inference (Benjamini, 2010). Please refer to Table 1 for a detailed comparison.

Error Rates Abbr. Expression
Per-Comparison Error Rate = FCER E[[R N Ho|/m] < «
Per-Family Error Rate PFER E[[RNHo|] < k
Familywise Error Rate FWER PIRNHo| > 1) <«
k-Familywise Error Rate k-FWER P(IRNHo| > k) <«
False Discovery Rate FDR E[[RNHol/|IRI V1] <«
k-False Discovery Rate k-FDR E[(IRNHo| —k)+/|RI V1] <«
Marginal FDR mFDR E[|R N Hol]/E[|R| V1] < «
Positive FDR pFDR E[|R NHol/IR|||R| > 0] < «
False Discovery Exceedance FDX, P(IRNHol/IR| > 7T) < «
Weighted FDR wFDR  E[Y ey, wil(i € R)/ > wil(ie R)V1] <«

Table 1: List of multiplicity-related error rates for simultaneous and selective inference.

Specifically, PCER and PFER are two unadjusted error measures, measuring the expectation of
Type I errors. FWER (strong control, see §A.2 for discussion), a well-established concept, is defined
as the probability of making at least one Type I error in the family. It provides a solution for various
statistical scenarios and purposes, including regulation, policy-making, and scientific reporting.
However, the drawback is that FWER control significantly limits the power of statistical methods,
making it only advisable to use when simultaneous inference is essential. An extension of FWER
is the k-FWER (Romano and Lehmann, 2005), characterizing the probability of committing k or
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more Type I errors within the family. In comparison, controlling FDR (Benjamini and Hochberg,
1995) safeguards against selection effects but lacks simultaneous inference. Due to its effective error
measure adjusted on false rejections and the significant power of correspondence methods, FDR has
emerged as one of the most widely adopted error rates. Besides, together the with False Coverage
Rate (FCR), it can provide advanced testing methods and reliable confidence intervals. This makes
it a suitable objective for gene filtration and feature selection. Similar to k-FWER, the extension
of k-FDR (Sarkar and Guo, 2009) allows personal assessment of the implications of relaxing the
requirements of FDR. Besides, mFDR and pFDR are variations on FDR, serving as important
intermediate statistics (see Theorem 2.1). Genovese and Wasserman (2004) introduced FDX as a
more robust version of FDR, especially when the FDPs are highly variable. wFDR (Benjamini and
Hochberg, 1997) is a promising, yet less-explored approach. With external weights indicating the
monetary value, it allows selective inference that can integrate more prior knowledge. Additionally,
it serves regulatory purposes, particularly for controlling the selection effects of secondary endpoints
within clinical trials. To summarize, the practitioners should match error rates to inference needs.

A.2 Controlling Methodologies for FWER

An extensive review of the FWER and k-FWER methodologies can be respectively found in Shaffer
(1995) and Sarkar (2007). In this subsection, we present the two most celebrated methodologies —
Bonferonni’s method and Holm’s procedure. Before delving into the details, we provide clarification
on the definition of different control levels of FWER. We say a testing procedure controls FWER
weakly if it controls the FWER under the global null, i.e., Hy = M. However, discussions among
statisticians primarily revolve around FWER control in the strong sense, i.e., Hg C M. In the
following, we first provide some arguments about the relationship between FDR and FWER.

Proposition A.1. (i) FDR(R) = FWER(R) if Ho = M; (ii) FDR(R) < FWER(R).

Proof of Proposition A.1. Under the global null where Hop = M, any rejection is a false rejection.
Following this, we have FDP(R) € {0,1}. Thus, it holds that

FDR(R) =P(FDP(R) =1) =P(|[RNHy| > 1) = FWER(R).
Similarly, we have
FDR(R) = E[FDP(R) 1(|R N Ho| > 1)] < P(|R N Ho| > 1) = FWER(R),
where the first equation follows FDP(R) = FDP(R)1(|R| > 1) = FDP(R) 1(|R N Ho| > 1). O
Proposition A.1 yields two noteworthy conclusions: (i) all FDR~controlled methodologies exert
a weak control over FWER, and (ii) FDR control is less stringent, meaning that if the metric aligns

with objectives, opting to control FDR rather than FWER will offer greater statistical power. Next,
we introduce the two most celebrated FWER-controlled procedures.

Bonferonni’s Method. Bonferonni’s method for multiple hypotheses testing rejects all hypothe-
ses with p-value below threshold -~. The method ensures FWER control in a strong sense, following:

_ |Hol
= —a.

B(|Ri, N Hol > 1) SE[Ry, NHol < Y P (P <o) =1

. m
1€EHo
We remark that Bonferonni’s method is valid for dependent p-values. If we assume ind(—“ipendence,
then we could employ the Sidak’s procedure by choosing threshold as a,, =1 — (1 — a)m, since

P(|Re, NHol > 1) =1 —P(|Ry, NHo| = 0) =1 — (1 — ap) ™ < .
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Holm’s Procedure. The intuition behind Holm’s procedure is that p-values can at least jointly
provide information about |Hg| and thus the procedure can be adjusted on the number of rejections
to improve the statistical power. In short, Holm’s procedure follows that

Holm’s: T; = P, ta:min{m+1 dUF<t) > %} (A1)
1eEM

and choose rejection set as R,. Then, we provide the theoretical guarantee of Holm’s procedure.
Theorem A.2. Holm’s procedure at level a € (0, 1) controls FWER at « in finite sample.

Proof of Theorem A.2. Suppose that Holm’s procedure commits at least one false rejection. Fol-
lowing the threshold choice of Holm’s procedure in (A.2), then we have

o} o o
< . < ;
m+1 *ZjeM]l(Pj <ta) T m+1- Zje/\/l 1(P; < minjey, i) ~ [Hol

(A.2)

la <

where the second inequality results from min;cyy, P; < t, due to the existence of the false rejections,
and the second inequality arises from

1(P<minPh) = 1(P; < min P, 1<m— 1.
Sr(nmpn) =S o(nempn) el
JEM JEH

Following (A.2) and taking a union bound over the set of null hypotheses Hy, it holds that
«
FWE =P N >1)=P(minP, <ty )| <PlmnP<— ) <o
R(Rt,) = P(|Re, NHol = 1) <f§%ﬁ < > (ggg}) |Ho\> a

O

Holm’s procedure does not require independence of the p-values and strictly dominates the Bon-
ferroni procedure. Please refer to Hochberg (1987) for an extensive review of FWER methodologies.

A.3 Storey’s Adaptive Procedure

In §3.2, we demonstrated that Storey’s 7y effectively addresses the over-conservativeness of the BH
procedure. Here, we make a supplement argument about the Storey’s 7o(\)-adaptive procedure. As
shown in Storey et al. (2004), finite-sample control guarantee is attainable with slight modification:

7o(N) - mt
i WP <t)
where Storey’s 7 is defined in (3.6) and the slight modification lies in the choice of candidate

threshold set such ¢, = sup{t € (0,1 — )] : F/D\P(t) < a}. The following theorem demonstrates that
Storey’s procedure ensures a finite-sample FDR control for all fixed A € (0, 1).

Storey’s: T, = P, ﬁ)\P(t) = (A.3)

Theorem A.3. Storey’s procedure at level o € (0,1) controls FDR at « in finite-sample.

Proof of Theorem A.3. For t € [0,1], denote F'(t) = |R; N Ho|. Note that

_ [FDP(ta) —= F(ta)
FDR(Ry,) =E Fope) -FDP(ta)] <a(l-)\)-E [ta ENIEIE (A.4)
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where the inequality results from threshold choice such that F/DTD(ta) < a. Write Sy = {1(P; >
A) tiem given A € (0,1). Furthermore, based on the double expectation theorem, we can get

ta (1+ Zf:ija]i (P > )\))] =k [1 + ZiEMlﬂ (B >N K [FEZ“) ‘ S/\:|:| . (A.5)

For any threshold ¢ € [0,1 — A], we define the filtration as F; = o{(L(P1 < 7),...,1(Py, < 7)) :7T €
[t,1 — A]}. Following this, for all 7 < ¢, it holds that

E[F(r) | Fi, S\ = > E[L(P < 7) | Fi, S
1€Ho
=Y ELB <UL <OLE 2N =) SLR<H=2FF). (A6
1€Ho i€Ho

Notes that (A.6) indicates that E[F(7)/7|F:] = F(t)/t and thus ¢t — F(t)/t is still a backward mar-
tingale conditioned on Sy (compared with the martingale arguments in Theorem 3.1). Furthermore,
to is a stopping time with respect to the filtration (-Ft)te[o,l— A]» and the optional stopping theorem
(Grimmett and Stirzaker, 2020) gives that E[F(ty)/ta] = F(1 — X). Following this, we have

11—\ e, LIPS 1= A
FDR(R,,) < 2L 2ico I )
A L+ ien, 1P > A)
_ a(l —A) ) Zie?{o]l(Pigl_)‘) S(l—/\mo‘)-a
A L+ [Hol = D iep, 1P < 1= A)
where the last inequality results from > ;5 1 (P <1 — A) ~ Binom(|Ho[,1 — A). O

We remark that while Storey’s procedure effectively mitigates the overconservativeness of the BH
procedure under general scenarios, similar to the BC procedure, it does not consistently outperform
the BH procedure, particularly in cases of weak feature signals. Additionally, the proof of Theorem
A.3 can be seen as a simplified version of the proof for the BC procedure with fixed A.

A.4 Testing with Conformal P-Values

Following Bates et al. (2023), we discuss the conformal p-values under the outlier detection frame-
work. Suppose that the practitioner observes a dataset D = {X;}ien that contains n independent
and independent and identically distributed points X; € R% drawn from an unknown distribution
Px, and conformity score function s : R? — R is decided beforehand to measure how much a new
observation conforms to previous data. For instance, a smaller value of s(X) may provide stronger
evidence that X is an outlier. Typically, such a conformity score function is trained by partitioning
the observations into training and calibration data D = Dyegt U Deal, and train s = §(Diest). Given
testing data Xp41,..., Xpim, the objective is to test Hy; : X1 ~ Px foralli € {n+1,...,n+m}.
For any X € R? the conformal p-value is defined as below:

L+ [{i e Vi s(Xy) < s(X)}

uX;D) = n+1

(A7)

For notational simplicity, we write P; = u(X;) for alli € {n+1,...,n+m}. Vovk et al. (1999) has
shown that for all X ~ Px, u(X) is a marginally super-uniform p-value such that

P(u(X;D)<t)<t, Vte(01), (A.8)

29



where the randomness is introduced by X and observations D. Equibalently, u(X,D) is uniformly
. . 1
distributed on | 75, , nL—l-l’

intuitive that larger scores in D make the p-values for all test data simultaneously smaller, and vice-
versa. Thus, conformal p-values shall share some kind of positive correlations, and this intuitive
idea is formalized by the following result proving conformal p-values are PRDS.

1}. Given the definition of marginal p-values in (A.7), it should be

Theorem A.4. Assume that u(-) is continuously distributed. Then, the conformal p-values (F;);c
in correspondence to Xp+t1,..., Xp+m are PRDS on the set of true nulls hypotheses Hy.

Proof of Theorem A.j. Let S; = s(X;) be the conformality scores for all ¢ € [n + m] and P =
(P1,...,Pp) be the conformal p-values evaluated on observations D. Furthermore, we define Z; =

(S’(i)7 S_i), where S_; = (Sp41,- -5 Snti—1,Sntitls-- -, Sn+m) and S’(i) = (SEI)’ . ’SEnH)) denotes
the order statistics of (S1,...,Sn, Sn+i). Note that

d
{(5(1),...,3(,,)) |Pi,S’(i)}:{(S(l),...,S(n)) | Ri,S’(i)} 4 ( (oo SRty SlRisty - gn+1)),

where R; is the rank of S,,4; among (S1, ..., Sy, Sp+i) suggested by P;. Intuitively, the preceding ar-
gument suggests that P; and Z; suffice to provide the order statistics (S(yy, ..., Sm)) of (S1,...,Sn),
implying that P; is jointly determined by P;, Z;, and Sp4j. Thus, P = (Py,..., Py) is a determin-
istic function of P; and Z;, denoted by P = G(F;, Z;). Given Z;, for j # i it holds that

Gj(P»L', Zi) = ! 1+ Z 1 (Sn-l-j > Szk))

n+1 k#R; k<n+1
1 ! n+1 !
-— (1 —1 (snﬂ- > S(Ri)> n ;11 (snﬂ- > S(k))> .

Following this, we have each entry G;(P;, Z;) is increasing in P; for all j # i as R; is increasing in P;.
If i € Ho, then S, 4; | S’(i) ~ Unif (S/(i)) and P; has the same distribution after conditioning. Thus,
P L S’(i). Furthermore, since Z,4; L Z,4; for all i # j by assumption, then P; L S_;. Combine
the argument above, we have P; 1 Z;. For any increasing set A, it holds that

P(PeA|P,=p)=P(G(p,Z;) € A| P, =p)
=Ez[P(G(p,z) € A| P,=p,Z; = z)] =Ez[1(G(p, z) € 4)].

Since A is an increasing set, G;(p, z) = p is non-decresing and G;(p, z) for all j # i are increasing
in p, then 1 (G(p, z) € A) is increasing in p, which implies the PRDS property. O

We remark that similar to the argument in (A.8), in the proof of Theorem A.4, we treat obser-
vations D, equivalently S’ ) in Z;, as random variables. Thus, the conformal p-values in (A.7) only
conform to the PRDS property marginally. Unfortunately, such a guarantee may be insufficient for
a practitioner who needs to compute p-values for a large number of test points but is constrained
to working with single observations D. Fortunately, it has been shown that calibration-conditional
conformal p-values are attainable. Please refer to Section 3 in Bates et al. (2023) for details.
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B Omitted Proofs in Main Article

B.1 Proof of Theorem 3.4
Proof of Theorem 3.J: Suppose that threshold ¢, of Lfdr-based procedure exists. Then,

g [FDP(Re,)

FDR(Rea) = | opR,)

(B.1)

.FDP(Ry, )}<o¢ E[LP(R )],

FDP(R:,)

where the inequality results from the threshold choice such that ¢, = max{t € [0,1] : @(Rt) < a}.

Thus, in the following proof we will respectively show that: (i) E [%] < 1 and (ii) t, exists.
ta

Step 1: Note that we can decompose the ratio as

FDP(R) _ S 1 (LX) <4)(1-6) S0, 1 (Lidr(X) < 1)(1 - 6)
FDP(R,)  oopy L (Lidr(X;) <¢)(1—6;) >y, Lide(X;) 1 (Lide(X;) < 1)
o, Lidr(X;) 1 (Lfdr i) < )
' S 1 (Lidr(X;) < ¢)Lfdr(X;)

Following this, we define

t) = % i 1 (Lfdr(X;) < t), = % i (Lidr(X;) < t),
Z Lfdr(X;) 1 (Lfdr(X;) < t), Z Lidr(X;) 1 (Lfdr(X;) < ¢)
= Z]l (Lfdr(X;) < ¢)(1 - 6y), = %i Lfdr <t)(1-6)
i=1 =1

Recall that for each i € [m] the observation follows model in (3.9):
0; ~ Bernoulli(w), X; ~ (1 —6;)fo+ 6;f1,
Following this, based on the Baye’s theorem, for all i € M, it holds that
Ex, o, []1 (Lfdr(X;) < )(1 — 91-)} —Ex, [Eei‘Xi [n (Lidr(X;) < £)(1 — ez-)H
= Ex, [1 (Lfdr(X;) <t) - P(6; = 0|X;)] = Ex, []1 (Lidr(X) < t)Lfdr(X)} . (B.2)

Based on the weak law of large numbers, it implies that

% i 1 (Lidr(X;) < ¢)(1 — 6;) 25 Dy(2), % i I (LEdr(X;) < £)LEdr(X;) -2 Dy (1),
; =1

where D; (t) is a continuous function over [0, 1]. Since | Dy, 2—Dp 1| < |Dpy2—D1|4+|D1—Diy 1|, then
| D2 — D 1 245 0. Now we are going to show that | Dy, 1 — Dy, 1| 250 and | D2 — D 2] L.0.
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Note that the difference |ﬁm,1 — Dyy,.1| can be decomposed as

Dyt — Dy | < '— ZLfdr 1 (Lfdr(X;) < t) — — ZLfdr 1 (Lfdr(X;) < )’

+ ’m ZLfdr 1 (Lidr(X;) < t) — — ZLfdr 1 (Lfdr(X;) < t)‘

Z |1 (Cr(X) < ) — 1 (Lide(X) < 1),

1 _
< — Lfd X Lfd
= ; ‘ r( r(X

where the first term converges to 0 in probability directly follows the weak consistency of L/far(Xi).
And similarly, |Dy, 2 — Dy, 2| can be written as

|l/jm,2 - Dm,2| ‘% Z [ (ITI;(TI'(XZ) S t) -1 (Lfdr(XZ) S t)] (1 — 92)
=1
< %i ‘ 1 (Lfdr(X;) < t) — 1 (Lfde(X;) < ¢) ‘

Il
—

7

All we left to show is that = >, | 1 (ﬂ’ar(Xl) < t)—1 (Lfdr(X;) < t)| converges to 0 in probability.
Note that for any € € (0,1), the term can be bounded by

%i ‘ 1 (ITfEI‘(Xz) <t) —1 (Lfdr(X;) < t)’

1, —
- = Z 1 (Lfdr(X;) < ¢, Ldr(X;) > t) + ~ ;1 (Ltdr(X;) < t,Lfdr(X;) > t)

- [% 371 (t— e < Lfdr(X;) < ¢, Lfde(X;) > t) + % in (Lfdr(X;) < t — e, Lidr(X;) > t)]
i=1 =1
[ Z]l t < Lfdr(X;) <t+e, Lfdr( ) <t) —I-%i]l (Lfdr(X;) >t + e, Lfdr( i) <t)]
=1

i=1
>e>

(L(X > 1) < X/t)

IN

1 & 1 & _—
a;]l(t—e<Lfdr(Xi)§t+e)—i—E;]l(‘Lfdr ;) — Lidr(X;)

IN

‘Dm,o(t +€) = Dmolt —e)

NN S [Chdr(x,) — Lidr(X,)
1

As Ly, ‘L/far(XZ) - Lfdr(Xi)’ 2 0 based on the weak consistency and e can be arbitrarily small,

take limitation at both side and the second term converges to 0 in probability. Then finishes the
proof of [ Dy, 1 — Dia| = 0 and | Dy, 5 — Dypo| = 0. Thus, it holds that

FDP(R;) _ Y%, 1 (Lfdr( 1) < t)(l —9) _ Dma(t) Dma(t) Dma(t) 2
FDP(R,) Y7, 1 (Lidr(X;) < ¢)Lfdr(X;)  Dm2(t) Dma(t) Dya(t)

for all ¢ € [0, 1] based on the Slusky’s theorem.
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Step 2: Recall that there exists constant ¢t € (0,1] such that Dj(teo)/Do(teo) < . Following
similar arguments as above, we can show that Dy, 1(ts0)/Dm,0(te) < a4 0(1) as

~ 1 & _
[Dino = Dol = — ; ‘ 1 (LEdr(X;) < t) — 1 (Lide(X;) < t)‘
1 o —
< ‘Dmp(t 4 €)= Dpolt — e)( +— z; )Lfdr(Xi) CLfdr(X:)|,  (B.3)

and thus ]f)mp — Dol -4 0. Furthermore, we have

Dinp(tso) _ Dma(too) | _ 1Dimo(toc) = Dimoteo)| + | Dim,i(toc) = Dimo(too)|
Dmo(tos)  Dyolteo)| | D0 (too) Dino(too)|

_ [Dimoltss) = Dino(too)| + 1D (tso) = Dinolteo)|

i . (B4)
Dm,O(too)(Dm,O(too) - |Dm,0(too) - Dm,O(too)D

Since Dy, 0(too) > 0 as Dy, 0(0) = 0, too > 0 and Dy, ¢ is monotone increasing, then 13m,1(too)/l3m70(too)
L Dot (too)/Dino(too). Recall that FDP(tog) = Dyn1(too)/Dimo(teo) < a+o(1), thus to, = max{t €
[0,1] : FDP(R;) < a} exists in probability. Combine Step 1 and Step 2, then we finish the proof. [

B.2 Proof of Theorem 4.2

Proof of Theorem 4.2. The proof is akin to that of Theorem 3.2 with an explicit construction. For
notational simplicity, we write T; = A(Xj;, s;), function ¢; := ¢, and S; = ¢;(T;), then we have

Yien, LT < ta)
S (T < tq) V1

FDR(R:,) =E [

<E Zie?—lo E(Ti S ta) ) 1 + Z:Zl ]l(Sl Z 1-— Ci(ta))
T T e, L(Si = 1= cifta)) S W(Ti <ta) V1
<a E Licn, 1T < ta)

)

LD e, 1(Si > 1 = ci(ta))

where the first inequality is based on 7,5, 1(S; > 1 —¢i(ta)) < D212 1(Si > 1 —c¢(ta))} and the
last inequality follows from the choice of t,. Then, we only need to show

iy 1T < ta) ]

E
T+ Yo, 1(Si > 1= cilta))

<1 (B.5)

The inequality can be proved using Lemma C.1 through a stopping time argument. Define

7

i _ ¢ 1(S)) if S; <0.5
Clegta -8 if S >05.

Let 7 = {T} : i € Ho}. Define the order statistics as T(l) <. < T(mo), where my = |Ho|. Without
loss of generality, assume that the first [Ho| hypotheses are null, i.e., Ho = {1,...,|Ho|}. Consider
optional stopping time J = max{j € Ho : T(;) < to}, where J must exist since ¢;(7;) < 0.5 for all 7
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based on the definition, and to < tmax = max{t : ¢;(¢t) < 0.5 for all i} such that ¢;(t,) < 0.5 holds.
Following this, we can get

Diery LT < ta) Yieno 1(e (i) <ta)
T Sieny LS 2 1= cilta)) 1 iy, 1 (1= 8) < ta)

(B.6)

Let B; = 1(S(;) > 0.5) for all ¢ € Hy and the order of S(;)’s is inherited from T(i)’s, rather than the
magnitude of S;’s. Note that for all i € H, CZI(SZ') < t, if and only if T, < t, and S; < 0.5, i.e.,
i < J and B; = 0. Similarly, 0;1(1 — 8;) < t, if and only if T, < t, and S; > 0.5, ie., i < J and
B; = 1. Combine the arguments above, (B.6) can be equivalently written as

Yien, UTi < ta) _ (1-Bi)+---+(1-By) 1+J .
L4+ ien, 1(Si > 1 —ci(ta)) 14+By+---+ By 1+Bi+---+B;y

Since B; are independent random variables satisfying B; ~ Bernoulli(0.5), by the optional stopping

14+J ] < 2, which completes the proof. O

lemma in Lemma C.1, we have E [m

C Technical Lemmas

Lemma C.1. (Barber and Candeés, 2019, Lemma 1) Suppose that Bj,..., B, are independent
variables with B; ~ Bernoulli(p;) for each i where min; p; > p > 0. Let J be a stopping time in
reverse time in respect to the filtration {F;} where

Fj={Bi+ -+ Bj,Bjt1+ -+ Bp}.

Then
1+J

<p_1.
1+By+--+ By
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